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Slides largely reused from Stanford’s CS224N: Natural Language Processing with Deep Learning (Spring’24).



Recap of Last Lecture

The Pre-Transformer Era: Recurrent Neural Networks (RNNs)

Basic architecture

Advantages over feed-forward networks

Variations and applications
Remaining limitations
Seq2Seq architecture

Attention mechanism
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Many Interesting Questions!

How many layers to use for the encoder RNN vs. the decoder RNN for a machine translation
task from given source language to a given target language?

How to set the incoming hidden state h, of the first RNN unit in different RNN architectures?

How to incorporate context ¢, computed from RNN encoder’s hidden states into the i step
of the RNN decoder’s computation? . ]
h=g(y;,, h "

C.
What exactly is the attention mechanish that was introduced in Bahdanau et al.'s ICLR 2015
paper titled “Neural Machine Translation by Jointly Learning to Align and Translate”? Was it
learned?



Homework 1 Due Dates

Part | is due this Wednesday (Sept 18).

Part Il is due next Wednesday (Sept 25).

Part Il will be released this Wednesday and will be due the following Wednesday (Oct 2).
All deadlines are 11:59 pm ET. No extensions!

Calendars, Gradescope, etc. to be updated soon.



Today's Agenda

e Impact of Transformers
e From Recurrence (RNNs) to Attention-Based Models

e The Transformer Block



Impact of Transformers



The Story So Far: RNNs for (Most) NLP

e Circa 2016, the de facto strategy in NLP is to encode
sentences with a bidirectional LSTM (e.g., the source
sentence in a translation).

e Define your output (parse, sentence, summary) as a
sequence, and use an LSTM to generate it.

e Use attention to allow flexible access to memory.
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Attention Is All You Need

We saw that attention dramatically improves
the performance of RNNs.

Transformers take this idea one step further!

Attention Is All You Need
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Great Results With Transformers As Chatbots

Transformer-based models dominate the LMSYS Chatbot Arena Leaderboard!

'::;';* 4 Model 4+ Arena Score 4 95% CI 4+ Votes 4+ Organization 4 License B z:::;:dge
1 ChatGPT-40:-1atest. (2024-08:08). 1316 +4/-3 31148 OpenAl Proprietary 2023/10

2 Gemini-1.5-Pro-Exp-0827 1300 +4/-4 22844 Google Proprietary 2023/11

2 Grok-2-08-13 1294 +4/-4 16215 XAL Proprietary 2024/3

4 GPT-40-2024-05-13 1285 +3/-2 86306 OpenAI Proprietary 2023/10

5 GPT-40-mini-2024-07-18 1274 +4/-4 26088 OpenAI Proprietary 2023/10

5 Claude. 3.5.Sonnet 1270 +3/-3 56674 Anthropic Proprietary 2024/4

5 Gemini-1.5-Flash-Exp-0827 1268 +5/-4 16780 Google Proprietary 2023/11

5 Grok-2-Mini-08-13 1267 +4/-4 16731 XxAI Proprietary 2024/3

5 Meta-Llama-3.1-405b-Instruct 1266 +4/-4 27397 Meta Llama 3.1 Community 2023/12

https://Imarena.ai/?leaderboard V g . m

Gemini ChatGPT/GPT-4 Claude 3 Llama-3 Grok-2
(Google) (OpenAl) (Anthropic) (Meta) (xAl)

Chiang et al. Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference. 2024.



https://arxiv.org/abs/2403.04132
https://lmarena.ai/?leaderboard

Great Results With Transformers On NLP Tasks

SuperGLUE is a suite of challenging NLP tasks, including question-answering, word sense
disambiguation, coreference resolution, and natural language inference.

Rank Name Model URL Score BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC AX-b AX-g

+ 1 Inspur Cloud Hairuo g 91.4 925 96.5/97.6 100.0 90.5/67.9 94.1/93.2 92.8 76.1  100.0 64.6 96.1/94.7
2 JDExplore d-team Vega v2 8 91.3 90.5 98.6/99.2 99.4 88.2/62.4 94.4/93.9 96.0 77.4 98.6 -0.4 100.0/50.0

+ 3 Liam Fedus ST-MoE-32B C);' 91.2 92.4 96.9/98.0 99.2 89.6/65.8 95.1/94.4 93.5 L/ 96.6 72.3 96.1/94.1
4 Microsoft Alexander v-team  Turing NLR v5 [:};' 90.9 92.0 95.9/97.6 98.2 88.4/63.0 96.4/95.9 941 771 97.3 67.8 93.3/95.5

5 ERNIE Team - Baidu ERNIE 3.0 C)J 90.6 91.0 98.6/99.2 97.4 88.6/63.2 94.7/94.2 926 77.4 97.3 68.6 92.7/94.7

6 YiTay PalLM 540B E);' 90.4 91.9 94.4/96.0 99.0 88.7/63.6 94.2/93.3 941 77.4 95.9 72.9 95.5/90.4

+ 7 Zirui Wang T5 + UDG, Single Model (Google Brain) 8 90.4 91.4 95.8/97.6 98.0 88.3/63.0 94.2/93.5 93.0 779 96.6 69.1 92.7/91.9
+ 8 DeBERTa Team - Microsoft ~ DeBERTa / TuringNLRv4 C’J 90.3 90.4 95.7/97.6 98.4 88.2/63.7 94.5/94.1 93.2 77.5 95.9 66.7 93.3/93.8

https://super.gluebenchmark.com/leaderboard

Wang et al. SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems. NeurlPS 2019.


https://arxiv.org/abs/1905.00537
https://super.gluebenchmark.com/leaderboard

Great Results With Transformers Outside NLP!

Protein Structure Prediction

AlphaFold ESM-1 ESM-2
Pleated sheet Alpha helix
A N
Secor
- o i e agitos o sk
are linked by hydiogen bonds
) 4 s Js.
< 5
~_ Pleated sheet
Tertiary protein structure
j occurs when cartain atractons e prassnt
between alpha hoices and pleated sheets - . -
> e AR ane e e 21 Million 650 Million 15 billion
9 Parameters Parameters Parameters
July 2021 November 2021 August 2022

Quaternary protein structure
s a protein consisting of more than one
amino aci  chain

Z. Lin et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science 2023.

Image Classification

Attention Map

200

Ours-JFT Ours-JFT Ours-121k BiT-L Noisy Student

(ViT-H/14)  (ViT-L/16)  (ViT-L/16) (ResNet152x4) (EfficientNet-1.2)
ImageNet 88.55+0.04 87.76+0.03 85.30+0.02 87.54 +0.02 88.4/88.5*
ImageNet RealL 90.72+0.05 90.54+0.03 88.62+0.05 90.54 90.55
CIFAR-10 99.50+£006 99.42+003 99.15+0.03 99.37 +£0.06 =
CIFAR-100 94.55+004 93.90+0.05 93.25+0.05 93.51 +0.08 —
Oxford-1IIIT Pets 97.56+003 97.32+0.11 94.67+0.15 96.62 +0.23 -
Oxford Flowers-102  99.68 +0.02  99.74+0.00 99.61+0.02 99.63 +£0.03 =
VTAB (19 tasks) 77.63+0.23 76.28+046 72.72+0.21 76.29 £ 1.70 -
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k

Vision Transformer models pre-trained on JFT-300M dataset outperform
ResNet-based baselines on all datasets, while taking substantially less

compute to pretrain.

A. Dosovitskiy et al. An Image is Worth 16x16
Words: Transformers for Image Recoagnition at

Scale. ICLR 2021.


https://www.science.org/doi/full/10.1126/science.ade2574
https://www.science.org/doi/full/10.1126/science.ade2574
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929

From Recurrence to Attention



Motivation for Transformer

e Minimize (or at least not increase) computational complexity per layer.

e Minimize path length between any pair of words to facilitate learning of
long-range dependencies.

e Maximize the amount of computation that can be parallelized.



1. Transformer Motivation: Computational Complexity Per Layer

When sequence length (n) << representation dimension (d), the complexity per layer
is lower for a Transformer model compared to RNN models.

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, & is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
S Operations

Self-Attention O(n? - d) O(1) 0(1)

Recurrent O(n - d? O(n) O(n)

Convolutional O(k~n-d?) O(1) O(logk(n))

Self-Attention (restricted) O(r-n-d) 0(1) O(n/r)

Table 1 of paper by A. Vaswani et al. Attention Is All You Need. NeurlPS 2017.



https://arxiv.org/abs/1706.03762

2. Transformer Motivation: Minimize Linear Interaction Distance

e RNN is unrolled “left-to-right”.

e It encodes linear locality: a useful heuristic!

e Problem: RNN takes O(sequence length)
steps for distant word pairs to interact.

(@)

Hard to learn long-distance dependencies due
to gradient problems.

Linear order of words is “baked in”; we already
know sequential structure doesn't tell the
whole story...

Nearby words often affect H
each other’s meanings H

tasty pizza

Info about chef has gone through
O(sequence length) many layers!

H*l..IHJH_...H|
L S

The chef who ... ate

meticulously prepared the finest gourmet dishes, using only the freshest,
most exquisite ingredients sourced from around the world, finally sat down
at the end of a long day in the kitchen. Exhausted but satisfied, he carefully
plated a small meal for himself, savoring each bite as he



3. Transformer Motivation: Maximize Parallelizability

Forward and backward passes have O(sequence length) unparallelizable operations.

e GPUs (and TPUs) can perform many independent computations at once!

e But future RNN hidden states can’t be computed in full before past RNN hidden states
have been computed.

Inhibits training on very large datasets!

Particularly problematic as sequence length increases, as we can no longer batch many
examples together due to memory limitations.

L e
RERRE N

Numbers indicate min # of steps before a state can be computed




High-Level Architecture: Transformer is all about (Self) Attention

Earlier, we saw attention from the decoder to the encoder in a recurrent
sequence-to-sequence model.

Self-attention is encoder-encoder (or decoder-decoder) attention where
each word attends to each other word within the input (or output).

attention All words attend to
— all words in
attention i previous layer;

most arrows here

embedding . 0 0o 0 0 0 O l are omitted.

h: h;




Computational Dependencies for Recurrence vs. Attention

Transformer Advantages:

RNN-Based Encoder-Decoder o # unparallgllzable operations does not
_ , increase with sequence length.
Model with Attention

e Each word interacts with each other, so

—Z

[I maximum interaction distance is O(1).
L

Transformer-Based
Encoder-Decoder Model




The Transformer Block



The Transformer Encoder-Decoder [Vaswani et al. 2017]

Next, we will learn exactly how the
Transformer architecture works:

First, we will talk about the Encoder!

Next, we will go through the Decoder
(which is quite similar)!
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Encoder: Self-Attention

Self-Attention is the core building
block of Transformer, so let's first
focus on that!

Encoder <
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Intuition for Attention Mechanism

Let’s think of attention as a "fuzzy" or approximate hashtable. To look up a value, we
compare a query against keys in a table.

In a hashtable: In (self-)attention:

ko — Vo ko
k1 —> V1 kl —
ka —>V2 ka —V>

q —/ ks v, q ks —>
k4 —> Vg k4 —> Vs
ks ——Vs ks Vs
ke —— Vg - ke —
k7 —> V7 k7 —

Each query matches each key to varying
degrees. We return a sum of values weighted
by the query-key match.

Each query (hash) maps to
exactly one key-value pair.



Recipe for Self-Attention in the Transformer Encoder

e Step 1: For each word x;, calculate its query, key, and value.
qi = WQx,- ki = Wle- 0; = vai

e Step 2: Calculate attention score between query and keys.

eij = 4q;-k;
e Step 3: Take the softmax to normalize attention scores. ?
eéxXp\é;;
a;; = softmax(e;;) = ﬂ
2 exp(eir)
k

e Step 4: Take a weighted sum of values.

Output; = Eai]-vj
j




Recipe for (Vectorized) Self-Attention in the Transformer Encoder

e Step 1: With embeddings stacked in X, calculate queries, keys, and values.
Q=XWQ K=XWK V=XW'

e Step 2: Calculate attention score between query and keys.
E = QK'

e Step 3: Take the softmax to normalize attention scores.

A = softmax(E)

Output = softmax(QKT)V

e Step 4: Take a weighted sum of values.

Output = AV




In Pictures(N=3,d=6,h=1)

WQ

How much should the
1st word attend to the
2nd word?

"al’b ['c Fdle I'f
Vv

e

WypaFTW,g+w,m
Wy b+w,h+wgn
Wy C+ W, i+w,0
Wy d+ Wy, j+w,p
Wy €+ W, K+ w,

a’ﬂ f+W12 I+W13 r




What We Have So Far: (Encoder) Self-Attention!
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Attention Isn't Quite All You Need!

Equation for Feed Forward Layer

Output
Probabilities
m; = MLP (output;) P S
= W, * ReLU(W; X output; + b;) + b,
o 0 (
i 1 1 i
FF FF FF FF Feed Forward
! I 1 ! Encod <
self-attention ncoaer
: [} L. see I ‘ Self-Attention
i i ] ! -
FF FF FF FF L , L )
r r & x r
self-attentlon Emltz]g;;ing Err?buetggitng
o | L) s [ 1‘ 1 T
I W3 wr s
The chef who food



Making This Work For Deep Networks

NEURAL
NETWORKS
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Training Trick #1: Residual Connections [He et al., 2016]

e Residual connections are a simple Residual connections are

but powerful technique from also thought to smooth the
computer vision. loss landscape and make

[no residuals] [residuals]

tra I n I ng eaS I e r' [Loss landscape visualization,

Lietal., 2018, on a ResNet]

e Deep networks are surprisingly bad
at learning the identity function!

,
e Therefore, directly passing "raw" 4
embeddings to the next layer can . > Decoder
actually be very helpful! Repeat 6x
Encoder < (# of Layers)
— Repeat 6x N
Xg _ F(X{_l) + Xg_l (# of Layers) se':tte_t)
. \ \ —/ \U J /
e This prevents the network from i
"forgetting” or distorting important i ki
information as it is processed by f f
many layers. Inputs Outputs

(shifted right)



Training Trick #2: Layer Normalization [Ba et al., 2016]

1 Batch with 3 samples

2\ V2|

Features

1
2
5 6 %
?

7 1
i/ Ay

G 375 350
2.23 147 2.69

Normalization across Peo\‘tur‘es,
‘nnclepenalen‘tlt/ for each SamPle_

Standard Deviation:

Encoder <

Repeat 6x
(# of Layers)

413 An Example of How LayerNorm Works
(Image by Bala Priya C, Pinecone)
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Training Trick #3: Scaled Dot Product Attention

After LayerNorm, the mean and variance of —

vector elements is 0 and 1, respectively.

However, the dot product still tends to take
on extreme values, as its variance scales
with dimensionality d, .

Quick Statistics Review:

Mean of sum = sum of means = d; *0 = 0
Enco

Variance of sum = sum of variances = dy * 1 = dj, Repeat 6x

To set the variance to 1, simply divide by \/d_k (# of Layers)

Updated Self-Attention Equation:

Output = softmax(QKT/ di |V
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Positional Encodings

Output = softmax(QKT/ d |V

We're almost done with the Encoder, but we have a
problem!

Consider this sentence: "Man eats small dinosaur."

Order doesn't impact the network at all!

This seems wrong given that word order does have N L, ~
meaning in many languages, including English!

Transformer-Based
Encoder-Decoder Model




Positional Encodings

Since self-attention doesn’t build in order information, we need to encode the

order of the sentence in our keys, queries, and values. Output
Probabilities
t
)
Consider representing each sequence index as a vector I

P; R ,fori € {1,2,..., T} (called position vector).
o _t
Don’t worry about what the p. are made of yet!
l Feed Forward DeCOder
Easy to incorporate this info into self-attention block: Repeat 6x
\ P Encoder < (# of Layers)
. . Repeat 6x Scaled
just add the pl. to our inputs! (# of Layers) P
At /
Let #; k;,d; b Id values, k d queri = e
et ¥; k;, §; be our old values, keys, and queries. - R
e ot e
Th vi s ﬁi + pi Embetddlng Embe-tddlng
en: _
qi = Eli + p; Inputs Outputs

k; =k; +p; (shifted right)



Position Representation Vectors Using Sinusoids (Original)

Sinusoidal position representations: concatenate sinusoidal functions of varying periods

(sin(i/100002*1/4) ) N , -
cos(i/100002+1/) e ==
Pi = : =
* d £
sin(i/lOOOOz*Z/d)
GOS(i/lOOOOZ*E/db Index in the sequence

We will study pros and cons when we look at two alternatives of such absolute position
encodings: relative position encodings and rotary position encodings.

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/



https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Multi-Headed Self-Attention: k heads are better than 1!

High-Level Idea: Perform self-attention multiple times in parallel and combine the results

Linear

Scaled Dot-Product ‘ b
Attention !

L 2l 11—
Pom Pem ae J
[ Linear Linear Linear

¥ 7 7

\ K Q

Wizards of the Coast, Artist: Todd Lockwood

[Vaswani et al. 2017]



The Transformer Encoder: Multi-headed Self-Attention

What if we want to look in multiple places in the sentence at once?

For word i, self-attention “looks” where xTiQTKx,- is high, but maybe
we want to focus on different j for different reasons?

Define multiple attention “heads” through multiple Q, K, V matrices!

d
d X— ) .
Let Qp, Kp,Vp € R™ ", where h is the number of attention heads,
and P ranges from 1 to h.

Each attention head performs attention independently:

outputp = softmax(XQpK, X™) * XVp, where outputp € Re/A
Then the outputs of all the heads are combined!

output = Y[outputy; ...; outputy], where Y € Rxd

Each head gets to “look” at different things, and construct value
vectors differently.

Layer:| 5 | Attention: | Input - Input %

-The_ The_
animal_ animal_
didn_ didn_

t_ t
Cross_ Cross_
the_ the_
street_ street_
because_ because_

it_ > it

In encoding the word "it", one attention head is
focusing most on "the animal", while another is
focusing on "tired". The model's representation
of the word "it" thus bakes in some of the
representation of both "animal” and "tired".
https://jalammar.qgithub.io/illustrated-transformer/



https://jalammar.github.io/illustrated-transformer/

In Pictures(N=3,d=6,h =2)

1. Compute Q, K, V : N x d as before

2. Reshape each to N x h x d/h

3. Transpose each to h x N x d/h; now
head axis is like batch axis

Everything else is identical and
matrices are the same sizes!



The Story So Far ...

We've completed the Encoder!

Next lecture we will look at the
Decoder...
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