
Professor Mayur Naik

CIS 7000 - Fall 2024

The Transformer Architecture: Part I

Slides largely reused from Stanford’s CS224N: Natural Language Processing with Deep Learning (Spring’24).

The Pre-Transformer Era: Recurrent Neural Networks (RNNs)

Basic architecture

Advantages over feed-forward networks

Variations and applications

Remaining limitations

Seq2Seq architecture

Attention mechanism

Recap of Last Lecture

Many Interesting Questions!

How many layers to use for the encoder RNN vs. the decoder RNN for a machine translation
task from given source language to a given target language?

How to set the incoming hidden state h0 of the first RNN unit in different RNN architectures?

How to incorporate context ci computed from RNN encoder’s hidden states into the ith step
of the RNN decoder’s computation?

What exactly is the attention mechanism that was introduced in Bahdanau et al.’s ICLR 2015
paper titled “Neural Machine Translation by Jointly Learning to Align and Translate”? Was it
learned?

hi
d = g(yi-1, hi−1

d,
ci)

Homework 1 Due Dates

Part I is due this Wednesday (Sept 18).

Part II is due next Wednesday (Sept 25).

Part III will be released this Wednesday and will be due the following Wednesday (Oct 2).

All deadlines are 11:59 pm ET. No extensions!

Calendars, Gradescope, etc. to be updated soon.

● Impact of Transformers

● From Recurrence (RNNs) to Attention-Based Models

● The Transformer Block

Today’s Agenda

Impact of Transformers

The Story So Far: RNNs for (Most) NLP

● Circa 2016, the de facto strategy in NLP is to encode
sentences with a bidirectional LSTM (e.g., the source
sentence in a translation).

● Define your output (parse, sentence, summary) as a
sequence, and use an LSTM to generate it.

● Use attention to allow flexible access to memory.

Attention Is All You Need

We saw that attention dramatically improves
the performance of RNNs.

Transformers take this idea one step further!

Great Results With Transformers As Chatbots

Transformer-based models dominate the LMSYS Chatbot Arena Leaderboard!

 Gemini
(Google)

Claude 3
(Anthropic)

ChatGPT / GPT-4
(OpenAI)

Llama-3
(Meta)

Grok-2
(xAI)

Chiang et al. Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference. 2024.

https://lmarena.ai/?leaderboard

https://arxiv.org/abs/2403.04132
https://lmarena.ai/?leaderboard

Great Results With Transformers On NLP Tasks

Wang et al. SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems. NeurIPS 2019.

SuperGLUE is a suite of challenging NLP tasks, including question-answering, word sense
disambiguation, coreference resolution, and natural language inference.

https://super.gluebenchmark.com/leaderboard

https://arxiv.org/abs/1905.00537
https://super.gluebenchmark.com/leaderboard

Great Results With Transformers Outside NLP!

Protein Structure Prediction

Z. Lin et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science 2023.

A. Dosovitskiy et al. An Image is Worth 16x16
Words: Transformers for Image Recognition at
Scale. ICLR 2021.

Image Classification

Vision Transformer models pre-trained on JFT-300M dataset outperform
ResNet-based baselines on all datasets, while taking substantially less
compute to pretrain.

https://www.science.org/doi/full/10.1126/science.ade2574
https://www.science.org/doi/full/10.1126/science.ade2574
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929

From Recurrence to Attention

● Minimize (or at least not increase) computational complexity per layer.

● Minimize path length between any pair of words to facilitate learning of
long-range dependencies.

● Maximize the amount of computation that can be parallelized.

Motivation for Transformer

1. Transformer Motivation: Computational Complexity Per Layer

When sequence length (n) << representation dimension (d), the complexity per layer
is lower for a Transformer model compared to RNN models.

Table 1 of paper by A. Vaswani et al. Attention Is All You Need. NeurIPS 2017.

https://arxiv.org/abs/1706.03762

2. Transformer Motivation: Minimize Linear Interaction Distance

● RNN is unrolled “left-to-right”.

● It encodes linear locality: a useful heuristic!

● Problem: RNN takes O(sequence length)
steps for distant word pairs to interact.

○ Hard to learn long-distance dependencies due
to gradient problems.

○ Linear order of words is “baked in”; we already
know sequential structure doesn't tell the
whole story...

Info about chef has gone through
O(sequence length) many layers!

Nearby words often affect
each other’s meanings

meticulously prepared the finest gourmet dishes, using only the freshest,
most exquisite ingredients sourced from around the world, finally sat down
at the end of a long day in the kitchen. Exhausted but satisfied, he carefully
plated a small meal for himself, savoring each bite as he

3. Transformer Motivation: Maximize Parallelizability

Forward and backward passes have O(sequence length) unparallelizable operations.

● GPUs (and TPUs) can perform many independent computations at once!
● But future RNN hidden states can’t be computed in full before past RNN hidden states

have been computed.
● Inhibits training on very large datasets!
● Particularly problematic as sequence length increases, as we can no longer batch many

examples together due to memory limitations.

All words attend to
all words in
previous layer;
most arrows here
are omitted.

High-Level Architecture: Transformer is all about (Self) Attention

Earlier, we saw attention from the decoder to the encoder in a recurrent
sequence-to-sequence model.

Self-attention is encoder-encoder (or decoder-decoder) attention where
each word attends to each other word within the input (or output).

Transformer Advantages:

● # unparallelizable operations does not
increase with sequence length.

● Each word interacts with each other, so
maximum interaction distance is O(1).

Computational Dependencies for Recurrence vs. Attention

RNN-Based Encoder-Decoder
Model with Attention

Transformer-Based
Encoder-Decoder Model

The Transformer Block

The Transformer Encoder-Decoder [Vaswani et al. 2017]

Next, we will learn exactly how the
Transformer architecture works:

First, we will talk about the Encoder!

Next, we will go through the Decoder
(which is quite similar)!

Decoder

Encoder

Self-Attention is the core building
block of Transformer, so let's first
focus on that!

Encoder: Self-Attention

Self-Attention

Encoder

Decoder

Each query matches each key to varying
degrees. We return a sum of values weighted

by the query-key match.

Intuition for Attention Mechanism

Let’s think of attention as a "fuzzy" or approximate hashtable. To look up a value, we
compare a query against keys in a table.

Each query (hash) maps to
exactly one key-value pair.

In a hashtable: In (self-)attention:

Recipe for Self-Attention in the Transformer Encoder

● Step 1: For each word , calculate its query, key, and value.

● Step 2: Calculate attention score between query and keys.

● Step 3: Take the softmax to normalize attention scores.

● Step 4: Take a weighted sum of values.

Recipe for (Vectorized) Self-Attention in the Transformer Encoder

● Step 1: With embeddings stacked in , calculate queries, keys, and values.

● Step 2: Calculate attention score between query and keys.

● Step 3: Take the softmax to normalize attention scores.

● Step 4: Take a weighted sum of values.

In Pictures (N = 3, d = 6, h = 1)

All weights between 0..1
and sum to 1 in each row

 w11

 w21

 w31

w12

 w22

 w32

w13

 w23

 w33

A

WQ

WK

WV

d

X

Q

K

 g h i j k lV
 a b c d e f

 m n o p q r

O

w11 d + w12 j + w13 p

w11 c + w12 i + w13 o

w11 b + w12 h + w13 n

w11 a + w12 g + w13 m

w11 f + w12 l + w13 r

w11 e + w12 k + w13
q

How much should the
1st word attend to the

2nd word?

What We Have So Far: (Encoder) Self-Attention!

Self-Attention

Encoder

Decoder

Attention Isn't Quite All You Need!

Feed Forward

Self-Attention

Equation for Feed Forward Layer

Encoder

Decoder

Training Trick #1:Residual Connections
Training Trick #2: LayerNorm
Training Trick #3: Scaled Dot Product
 Attention

Making This Work For Deep Networks

Feed Forward

Self-Attention

Encoder
Repeat 6x

(# of Layers)

Decoder
Repeat 6x

(# of Layers)

Training Trick #1: Residual Connections [He et al., 2016]

● Residual connections are a simple
but powerful technique from
computer vision.

● Deep networks are surprisingly bad
at learning the identity function!

● Therefore, directly passing "raw"
embeddings to the next layer can
actually be very helpful!

● This prevents the network from
"forgetting" or distorting important
information as it is processed by
many layers.

Feed Forward

Self-Attention

Add

Add

Encoder
Repeat 6x

(# of Layers)

Decoder
Repeat 6x

(# of Layers)

Residual connections are
also thought to smooth the
loss landscape and make
training easier!

Training Trick #2: Layer Normalization [Ba et al., 2016]

Feed Forward

Self-Attention

Add & Norm

Add & Norm

An Example of How LayerNorm Works
(Image by Bala Priya C, Pinecone)

Mean: Standard Deviation: Encoder
Repeat 6x

(# of Layers)

Decoder
Repeat 6x

(# of Layers)

Training Trick #3: Scaled Dot Product Attention

After LayerNorm, the mean and variance of
vector elements is 0 and 1, respectively.

However, the dot product still tends to take
on extreme values, as its variance scales
with dimensionality dk.

Quick Statistics Review:

Mean of sum = sum of means =

Variance of sum = sum of variances =

To set the variance to 1, simply divide by

Updated Self-Attention Equation:

Feed Forward

Scaled
Attention

Add & Norm

Add & Norm

Encoder
Repeat 6x

(# of Layers)

Decoder
Repeat 6x

(# of Layers)

We're almost done with the Encoder, but we have a
problem!

Consider this sentence: "Man eats small dinosaur."

Order doesn't impact the network at all!

This seems wrong given that word order does have
meaning in many languages, including English!

Positional Encodings

Transformer-Based
Encoder-Decoder Model

Positional Encodings

Feed Forward

Scaled
Attention

Add & Norm

Add & Norm

Encoder
Repeat 6x

(# of Layers)

Decoder
Repeat 6x

(# of Layers)

Positional
Encoding

Consider representing each sequence index as a vector

𝑝𝑖 ∈ ℝ
𝑑

, for 𝑖 ∈ {1,2, … , 𝑇} (called position vector).

Don’t worry about what the 𝑝𝑖 are made of yet!

Easy to incorporate this info into self-attention block:

just add the 𝑝𝑖 to our inputs!

Let be our old values, keys, and queries.

Then:

Since self-attention doesn’t build in order information, we need to encode the
order of the sentence in our keys, queries, and values.

We will study pros and cons when we look at two alternatives of such absolute position
encodings: relative position encodings and rotary position encodings.

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Position Representation Vectors Using Sinusoids (Original)

Sinusoidal position representations: concatenate sinusoidal functions of varying periods

https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Multi-Headed Self-Attention: k heads are better than 1!

High-Level Idea: Perform self-attention multiple times in parallel and combine the results.

Wizards of the Coast, Artist: Todd Lockwood[Vaswani et al. 2017]

What if we want to look in multiple places in the sentence at once?

For word 𝑖, self-attention “looks” where is high, but maybe
we want to focus on different 𝑗 for different reasons?

Define multiple attention “heads” through multiple Q, K, V matrices!

Let where ℎ is the number of attention heads,
and 𝑃 ranges from 1 to ℎ.

Each attention head performs attention independently:

Then the outputs of all the heads are combined!

Each head gets to “look” at different things, and construct value
vectors differently.

The Transformer Encoder: Multi-headed Self-Attention

In encoding the word "it", one attention head is
focusing most on "the animal", while another is
focusing on "tired". The model's representation
of the word "it" thus bakes in some of the
representation of both "animal" and "tired".
https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

In Pictures (N = 3, d = 6, h = 2)

A1

WQ

WK

WV

d

X 1. Compute Q, K, V : N x d as before

2. Reshape each to N x h x d/h

3. Transpose each to h x N x d/h; now
 head axis is like batch axis

Everything else is identical and
matrices are the same sizes!

V

Q

A2
K

O
2

O
1

The Story So Far …

We've completed the Encoder!

Next lecture we will look at the
Decoder... Decoder

Encoder

Repeat 6x
(# of Layers)

